高斯-牛顿法(Guass-Newton Algorithm)与莱文贝格-马夸特方法(Levenberg–Marquardt algorithm)求解非线性最小二乘问题

众所周知,最小二乘法通过最小化误差平方和获得最佳函数。有时候你可能产生疑问,为什么不能通过其他方式获得最优函数,比如说最小化误差的绝对值的和?本文中,我将会从概率的角度解释最小二乘法的依据(参考自andrew ng 《机器学习课程》 第三讲)。最小二乘问题可以分为线性最小二乘和非线性最小二乘两类,本文的目标是介绍两种经典的最小二乘问题解法:高斯牛顿法与莱文贝格-马夸特方法。实际上,后者是对前者以及梯度下降法的综合。 Continue reading

梯度下降法(gradient descent)与牛顿法(newton’s method)求解最小值

梯度下降法与牛顿法是求解最小值/优化问题的两种经典算法。本文的目标是介绍两种算法的推导思路与流程,并且从初学者的角度就一些容易混淆的话题如 梯度下降法(gradient descent)与最速下降法(steepest descent)的联系与区别、牛顿求根迭代方法(Newton–Raphson method) 与牛顿法求解最小值算法的联系(来自 Andrew Ng 机器学习课程第四讲)进行说明。本文的内容将对高斯牛顿法(Gauss–Newton algorithm) ,Levenberg-Marquardt算法(LM算法)等非线性最小二乘问题解法起到引出作用。

Continue reading

最小二乘圆拟合: Pratt 方法

kasa方法圆拟合作为最常见的圆拟合方法,虽然计算方法简单,效率快,但是拟合结果存在较大偏差(Heavy bias)。通过将\(D=\sqrt{(x-a)^2+(y-b)^2}\)与半径R的差值\(D-R\)转换为\(D^2-R^2\),将非线性问题转换为线性问题。但是因为\(D^2-R^2 = d(d+2R) (令d=D-R)\),当偏离值d较大时,kasa方法导致R明显变小。Pratt通过将kasa方法的目标除以\((2R)^2\)的方式,取得更准确的结果。 Continue reading

最小二乘法三维(k维)直线拟合

上篇文章已经实现了二维直线\(Ax+By+C=0\)的拟合算法。如果要拟合三维直线怎么办?首先,方程\(Ax+By+Cz+D=0\)是不可以的,因为他是三维空间中的一个平面。如果要表达一条直线,需要两个三维平面的联立,似乎也不是个好办法。这里我们可以采用直线的“点+向量”方程\(l = A + dD\)的方式。 Continue reading